
Abstract

On the Power of Bounded Concurrency 111:
Reasoning about Programs

Preliminary Report

David Harel* and Roni Rosnert
The Weizmann Institute of ScienceS

and
Moshe Vardis

IBM Almaden Research Centern

In this paper we continue the study of the in-
herent power of bounded cooperative concurrency,
whereby an automaton can be in some bounded
number of states that cooperate in accepting the
input. The present paper addresses the difficulty
of reasoning about programs. Specifically, we con-
sider the question of whether the additional succinct-
ness that bounded concurrency provides influences
the complexity of reasoning about regulzr computa-
tion sequences on the propositional level. Our re-
sults concern dynamic, temporal, and process logics,
and supply a strongly affirmative answer. In par-
ticular, we prove triple-exponential time upper and
lower bounds on deciding the validity of propposi-
tional dynamic logic with alternating automata en-
riched with bounded cooperative concurrency, and
quadruple-exponential time bounds for deciding va-
lidity of branhcing-time and process logics with such
automata. In addition to constituting further evi-
dence for the inherent exponential nature of bounded
concurrency, the results appear to provide the first
examples of natural decision problems that are ele-

*This author’s research partially supported by a grant from
the Gutwirth Foundation.

tThis author’s research partially supported by a grant from
the Israel Ministry of Science and Development, the National
Council for Research and Development.

:Address: Department of Applied Mathematics and Com-
puter Science, The Weizmann Institute of Science, Re-
hovot 76100, Israel. E-mail: harel0uisdom. ueizmonn. nc. IL,
roni0uisdom.ueizmann.nc.IL

$This author’s research carried out in part while visiting the
Dept. of Applied Mathematics and Computer Science at the
Weizmann Institute of Science, during the Summer of 1989.

VAddress: IBM Almaden Research Center, San Jose, CA
95120-6099. E-mail: vardi0ibm. com

mentary yet have lower bounds that are higher than
double-exponential time.

1 Introduction

Classical models of computation, such as Turing ma-
chines and automata, have been enriched with ex-
istential and universal branching to capture paral-
lelism. However, unlike the constructs used in the
study of real distributed processes and protocols, in
these types of branching no cooperation takes place
between the spawned processes, except when time
comes to decide whether the input should be ac-
cepted. In Turing machines and pushdown automata,
for example, this fact is reflected in the separate tapes
or stacks that are generated whenever branching (of
either kind) takes place. Thus, branching essentially
produces separate computations, the results of which
are later combined to form the joint result. It would
appear that in order to capture real-world concur-
rency we would want to allow a mechanism to be in
multiple states during a single computation, and to
enable these states t o cooperate in achieving a com-
mon goal. This approach, which one might call coop-
erative concurrency, is the dominating one in research
on distributed systems, and not the noncooperative
concurrency of pure branching. Moreover, in the real
world, the number of processors available for simul-
taneous work is bounded and cannot be assumed to
grow as the size of the input grows. One machine of
fixed size must solve the algorithmic problem in ques-
tion for all inputs. In contrast, existential and univer-
s a l branching are unbounded - new processes can be
spawned without limit as the computation proceeds.
In the sequel, we shall use E, A and C, respectively, to
denote existential branching (nondeterminism), uni-

CH2897-7/90/0000/0478$01 .OO 0 1990 IEEE 478

versa1 branching (V-parallelism), and bounded c o o p
erative concurrency (or simply bounded concurrency
for short).

Two previous papers [DH89, HH901 have inves-
tigated the inherent power of bounded cooperative
concurrency, relating it to the two classical kinds
of branching. In both papers the criteria used in
comparing the power of features is succinctness. In
[DH89] finite automata were considered, over both fi-
nite and infinite words, and in [HHSO] pushdown au-
tomata were considered, for both deterministic and fi-
nite languages. One finding that recurs in all of these
cases is that the C feature gives rise to inherently
exponential differences in power, in both upper and
lower bound senses, regardless of whether E and A
provide more, less, or the same power. This research
is motivated and summarized in a uniform fashion in
[Har891.

To help describe the present work we survey some
of the results of [DH89]. It is well-known that NFAs
are exponentially more succinct than DFAs, in the
following upper and lower bound senses (see, e.g.,
[MF71]):

0 Any NFA can be simulated by a DFA with at
most an exponential growth in size.

0 There is a (uniform) family of regular sets, L,,
for n > 0, such that each L, is accepted by an
NFA of size O(n) but the smallest DFA accepting
it is of size at least 2,.

The same is true of V-automata, namely, the dual
machines, in which all branching is universal. It is
also true that AFAs, i.e., those that combine both
types of branching, are exponentially more succinct
than both NFAs and V-automata, and indeed are
double-exponentially more succinct than DFAs (see
[CKSSl]). These results also hold in both the u p
per and lower bound senses described. Thus, in this
framework, E and A are exponentially powerful fea-
tures, independently of each other (that is, whether
or not the other is present), and, moreover, their
power is additive: the two combined are double-
exponentially more succinct than none. Taking a
solid arrow to depict the presence of an upper and
lower bound of one exponential, the bottom horizon-
tal lines of Fig. 1 summarize these known facts.'

In [DH89] the effect of adding the C feature was
investigated, via the use of statecharts [Har87] as
an extension of finite automata. One set of results

'In the figure, transitivity is assumed too; hence, the line
labeled 'twc-exponentials' that would lead from (E,A) to 0 is
omitted for clarity, despite the fact that it does not follow a
prior i .

in [DH89] establishes the vertical lines and the top
horizontal lines of Fig. 1, and all the transitivity
consequences thereof. Among other things, these in-
clude exponential upper and lower bounds for simu-
lating nondeterministic statecharts on NFAs, double-
exponential bounds for simulating them on DFAs,
and triple-exponential upper and lower bounds for
simulating alternating statecharts on DFAs. Thus,
the vertical and horizontal lines of Fig. 1, with their
transitive extensions, show that bounded concurrency
represents a third, separate, exponentially powerful
feature. It is independent of conventional nondeter-
minism and parallelism, since the savings remain in-
tact in the face of any combination of A and E, and
is also additive with respect to them, by virtue of
the double- and triple-exponential bounds along the
transitive extensions.'

We should add that all these results are extremely
robust, in that they are insensitive to the particular
mechanism of cooperation adopted. In many of the
lower bound proofs the main use of cooperation is
merely to pass along carries when counting in binary
- an extremely simple form of cooperation. Conse-
quently, the results do not depend on the choice of
statecharts as the language for describing computa-
tions; in fact, in this paper we define the C feature in
terms of a simple extension of finite automata. This
extension is an abstraction of the bounded cooper-
ative concurrency feature present in the statechart
formalism as well as in bounded versions of conven-
tional formalisms of concurrency such as Petri nets
[Rei851 CSP [Hoa78], CCS [Mi180], or the concurrent
versions of standard programming languages such as
Pascal or Prolog. As the reader will be able to see
quite easily, this robustness carries over to our work
here too.

In the present paper we concern ourselves with the
effect these discrepancies in succinctness have on the
difficulty of reasoning about regular programs a t the
propositional level. We consider several formalisms:
linear temporal logic (LTL) [Pnu77], branching tem-
poral logic (BTL) [EH861 , propositional dynamic logic
(PDL) [FL79], and process logzc (YAPL) [VW83]. For
lack of space we focus in this preliminary report on
PDL and BTL.

To motivate the work further, it is useful to recall
some results on PDL. (Definitions can be found in
[FL79, Har84, KT891.) One of the basic questions re-
garding PDL is the complexity of deciding the validity
of formulas. Is the validity problem decidable, and if
so is it worse than that of its sublogic, the proposi-

'Similar results arc obtained in [DH89] for the case of in-
finite words, and in [Hir89] for the case of finite words over a
one-let ter alphabet.

419

tional calculus (which is co-NP-complete)? In [FL79]
it is shown that the problem is decidable in NEXP-
TIME, a bound that was later improved by Pratt to
DEXPTIME3 (see, e.g., [Har84, KT891). A match-
ing lower bound of EXPTIME was also established
in [FL79], so that the problem is actually logspace-
complete for deterministic exponential time.

An interesting question was raised in [PraSl]. From
results in [EZ76] it follows that NFAs are exponen-
tially more succinct than regular expressions, in the
upper and lower bounds senses used here4. The ques-
tion in [Pra81] was whether the version of PDL in
which the programs are NFAs, instead of regular ex-
pressions, is complete for EXPTIME or perhaps re-
quires PEXPTIME (double-exponential time) - one
exponential for transforming the NFAs into regular
expressions and the other to apply the exponential
time decision procedure for regular PDL5. The an-
swer is the former: PDLE, as we may call it, signify-
ing that the programs are automata enriched with the
E feature, is also decidable in EXPTIME (see [Pra81,
HS851). Clearly, this implies EXPTIME decidability
for PDLe too. (The lower bound of EXPTIME can
be easily established for PDLe too.) Thus, the dif-
ferences in succinctness between regular expressions
and deterministic or nondeterministic automata do
not affect the exponential time decidability of PDL;
reasoning about abstract regular programs, given in
any of the three media for representation, can be car-
ried out in deterministic exponential time.

Given the succinctness results of Fig. 1, new ques-
tions arise. Does the A feature make a difference?
How about the C feature? What happens when two
or three of the features are present? Our main re-
sult is that, in contrast with E, the A and C features
do make a difference. We show that the succinct-
ness that these features provide carries over to the
problem of reasoning about computation sequences
enriched by the corresponding automata, causing the
decision problems to be much harder. Specifically, we
show that A and C add an exponential to the com-
plexity of the decision problems for the formalisms
we investigate, independently of each other, and in
an additive manner. Our results, depicted in Fig. 2,
are summarized in Fig. 3.

The outline of the paper is as follows. The techni-
cal issues that cause the decision problems to become
hard are isolated in Section 2. It turns out that it suf-
fices to be able to carry out a uniform kind of counting

3Wc shall simply write EXPTIME for short.
4For DFAs, there arc exponential lower bounds in both

directions.
We should add that representing regular programs by au-

tomata, rather than by regular expressions, is tantamount to
moving from while-programs to flowcharts.

and marking states in the models. Whenever this is
doable, the appropriate lower bounds follow.

Our results are
summarized in the penultimate column of Fig. 3. It
is not too difficult to see that the upper bounds follow
from those of Fig. 1. For example, that PDLE,A,c can
be decided in triple-exponential time follows from the
ability to remove the A and C features at a cost of
two exponentials, and to then apply the exponential
decision procedure of [HS85, Pra811. We thus con-
centrate on lower bounds, which require a nontrivial
combination of techniques from [Abr80, DH89, FL79,
VS851. (The main results of Section 3 appeared in
preliminary form in [Har89].)

We next turn to CTL*, a branching version of tem-
poral logic in which formulas can quantify over paths
in the model [EH861 and YAPL, a restricted form
of process logic [VW83]. For both of these, an upper
bound of 2EXPTIME was established in [EJ88, EJ89]
and a lower bound of 2EXPTIME was established in
[VS85]. In Section 4 we extend these logics too with
the E, A and C features. Our results concerning the
added complexity of these features are analogous to
those for PDL, as can be seen in the last column
in Fig. 3. Since the basic decision problem here is
BEXPTIME, all the complexity bounds are one expo-
nential higher. In particular, CTL* and YAPL with
alternating statecharts is shown to be complete for
4EXPTIME.

Our bounds for CTL* apply also to the problem
of program synthesis, studied in [PR89a, PR89bl. It
is shown there how, given a linear temporal speci-
fication ‘PI a branching temporal formula ?I, can be
derived, whose validity expresses the implementabil-
ity of the specification p. On the propositional level,
this form of the synthesis problem is PEXPTIME-
complete. We observe that our proofs of the CTL*
case entail analogous results concerning the synthe-
sis problem. Specifically, we can show that for spec-
ifications given in linear temporal logic augmented
with automata temporal connectives, the complexity
of synthesis is identical to that of CTL* augmented
with the corresponding automata. This applies to
any combination of E, A and C.

We consider the results of the paper to be interest-
ing in several respects. First, they provide additional
strong evidence for the inherent exponential power of
bounded cooperative concurrency. Second, they show
that the relationship between the E, A, and C fea-
tures, when considered in the present framework, dif-
fers from that obtained when investigating succinct-
ness alone as in [DH89, Hir891. This is demonstrated
by the difference between Fig. 1 and Fig. 2. Finally,
the 2EXPSPACE, 3EXPTIME and 4EXPTIME re-

We consider PDL in Section 3.

I

480

sults appear to be the first examples of natural deci-
sion problems in logic that are solvable in elementary
time, but whose lower bounds are higher than 2 E X -
PTIME.

2 Counting and Comparing Counters

As our basis, we use finite-state automata on finite
words. We briefly describe an extension thereof, sim-
ilar to that of [CKS81], but enriched with the C op-
erator of [DH89], with the intention of providing a
uniform approach to the different notions of concur-
rency. An automaton in our extended model consists
of the following components: A finite alphabet C; a
set S of states partitioned into three types: E-states,
A-states and C-states; two designated sets of initial
and of terminal subsets of S; and a transition func-
tion, assigning to each pair of states (i.e., a transi-
tion) a Boolean expression over B = C U S. Here, E
stands for existential (unbounded) nondeterminism,
A stands for universal (unbounded) nondeterminism,
and C stands for bounded cooperative concurrency. A
transition (~ 1 , s ~) is said to be enabled on a set of
states SI and a symbol a E C, if the transition func-
tion assigns to it a true expression under the char-
acteristic function of S' U {a} in B . A run of an
automation A on a word ala2 . . . ak is a finite fron-
tiered tree (called a trace) of depth k , each node of
which contains a non-empty set of states. The root of
the trace contains some initial subset of S. A node on
level i of the trace containing the set S' is expanded
to its level i+ 1 successors by simultaneously applying
some transition that is enabled on SI and a; to each
E-state in SI, and all enabled transitions to every C-
state and A-state in SI. A C-state is expanded by
replacing it by all of its successors, but without split-
ting the node. An A-state, on the other hand, is ex-
panded by splitting the node in question into several
nodes, each of which contains the expansion of the
original set of states but with the A-state replaced by
one of its successors. This captures the subtle differ-
ence between C and A: the former denotes parallelism
within a single computation path, whereas the latter
denotes branching into separate paths. A accepts a
word if there is some accepting run of A on it, i.e.,
a trace in which all the nodes along its frontier con-
tain terminal sets of states. (We note that there is an
obvious correspondence between these automata and
the (A,E)-statecharts of [DH89].) The language of A ,
L (A) , is the set of all words accepted by A .

Call the automaton A a I?-automaton, for r
{A,E,C}, if A employs the features listed in r (i.e., A
has states of the corresponding types). An automa-
ton A operating on an alphabet C = {ao,. . . ak-l},

denoted A (Q , . . . , ak-l), is viewed as a IC-ary opera-
tor. We briefly describe the formalism; the reader is
referred to [HS85, VW83, WVS831 for more details.

We consider propositional logics of programs with
two types of elements: programs and formulas.
We obtain programs by applying IC-ary automata
A(%, . . . ,ak- l) to k pairs (X;,b,), where Xi is a
propositional formula and b; is an atomic program.
The intended semantics of this program is a set of
paths, where every such path corresponds to a word
in the language accepted by A . The letter ai corre-
sponds to a bi-transition from a state satisfying X;.
This definition is in the spirit of defining programs
over sequences of alternating tests and letters, which
is more suitable for our approach of unifying the dy-
namic and temporal formalisms.

Formulas are formed from atomic propositions
P, Q, . . ., and programs, by Boolean connectives 1, V,
and the <> modality over pairs of programs and for-
mulas. All formulas are state fomulas, i.e., their in-
tended semantics is a set of states, except for pro-
grams, which are path formulas, i.e., their intended
semantics is a set of paths.

Process logic (YAPL) is the largest formalism ad-
mitting all the above defined formulas. Here, < a >
X requires X to be evaluated over an infinite path
a prefix of which is admitted by a. Propositional
dynamic logic (PDL) is obtained as the special case,
where modalities are applied only to state formulas,
with < a > X requiring X to hold at some end-state
of an (Y path. In branching temporal logic (BTL) on
the other hand, there is only one implicit atomic pro-
gram, say a, and thus a single modality < a' > (de-
noted by the path quantifier 3) , while linear temporal
logic (LTL) is further restricted to linear models (and
hence also drops the path quantifier 3). A subscript
r to the above logics refers to the automata features
admitted.

Let C = {0,1} be our basic alphabet. We consider
automata with alphabet XfZiC = E('), 1 > 0. A
letter in E(') is to be viewed as encoding the truth
values of 1 propositions. Let D be an automaton over
the alphabet C. For a letter b E E(') define the b
discriminating expansion of D , to be the automaton
Db over the alphabet E(') , derived from D by replac-
ing any 1-edge in D by a bedge, and any 0-edge in it
by the set of all possible E(') - {b} edges.

For an integer k 1 0, define the function 2(') : Jf -+

N as follows: 2(')(m) = m, and 2('+')(m) = 22'k'(").
Let L be any version of LTLr, PDLr, BTLr, or

YAPLr, with r {E,A,C}. Let R be an atomic
proposition and f : N -+ Af an integer function. De-
fine an R- f-counter to be a family CP = {CP,, I n > 0)
of L-formulas that can be generated in polynomial (in

4n I

n) time, such that:

0 every model for 'Pn has at least f (n) distinct
states in which R holds (call such states R-
states); and

a for every m > 0, there exists a model for 'P,
and a cycle in this model, along which there are
precisely mf (n) distinct R-states.

Intuitively, the formula 'P, counts reference points
marked by the proposition R along paths, so that
every cycle has a count of 0 modulo f (n).

Given such a counter, define an R- f-positioner to
be a family $(X) = { q n (X) I n > 0) of L-formulas
that can be generated in polynomial (in n) time, such
that: for any L-formula X, a model M for 'P,, and
R-state SO, if M,so $,(X), then along every path
in the model, formed by atomic programs from 4,
and rooted at so, the f(n)-th R-state satisfies X. In-
tuitively, the formula $,(x) imposes the truth of x
at the f(n)-th reference point along any appropriate
path.

The idea underlying our lower bounds is that a pair
consisting of an R-f-counter and an R- f-positioner,
enables us to describe Turing machines behaviors
structured as either sequences or trees, with fixed size
configurations at each node. The size of all configu-
rations is a multiple g(n) = mf(n) , for some fixed
m > 0. To be able to describe paths along such trees
we require that every configuration follows from the
previous one by 'local' transformations only, i.e., the
j ' th point in a configuration can be determined by
propositional reasoning from the j'th point in the pre-
vious configuration. Indeed, Turing machines transi-
tions are local in that sense.

The logic L is linearly-i-succinct, i 2 0, if there
exist in L,

0 an R-2(i)-counter (0; and

0 an R-Z(*)-positioner $(X).

L is i-succinct if it is linearly-i-succinct, and is inter-
preted over branching structures, i.e., L is not LTL.
L is ezactly (linearly-) a-succinct if i is the largest j
such that L is (linearly-) j-succinct.

The next results isolate the computational aspects
of our proofs, by generalizing the simulation of vari-
ous Turing machines using appropriate powerful log-
ics.

Proposition 2.1 If L is k-succinct, then

a the satisfiability problem for L is logspace hard
for 2('+')-DTIME; and

a the size of models for formulas of length n is
Cl(2("+1)).

Sketch of Proof:
We generalize techniques used in [FL79] for prov-
ing the one-exponential lower bound for regular
PDL, and ideas that are reminiscent of the double-
exponential bounds given in [Abr80] for PDL with
Boolean variables, and in [VS851 for CTL*.

Given an arbitrary 2(k)(cn)-space-bounded alter-
nating Turing machine M , with c a constant, and an
input c of size cn, we construct a polynomial-size for-
mula ' P M , ~ in the logic L, and show that M accepts
x iff (0 ~ ~ ~ is satisfiable. The idea is to encode each
configuration of M by a sequence of 2(')(cn) R-states
in an L model, identified by an appropriate R-2(')-
counter. The key thing that ' P M , ~ must be able to
do (all the rest follows more or less standard PDL or
CTL* techniques), is to jump from an arbitrary point
in one configuration to the corresponding point in a
successor configuration, in order to verify compliance
with the transition table of M . This is done by using
the corresponding R-2(k)-positioner.

The total size of the resulting formula can then be

By restricting these techniques to linear models,
we may similarly encode computations of nondeter-
ministic space-bounded Turing machines. Hence the
following corollary.

Corollary 2.2 If L is linearly-k-succinct, then

shown to be polynomial in n. d

a the satisfiabilzty problem for L is logspace h a d

0 the size of models for formulas of length n is
for 2(k)-SPACE; and

Cl(2('+')).

Having thus set up the general results, we are left with
having to show succinctness of the different versions
of the particular logics we are interested in. This is
done in the following two sections.

3 PDL and LTL with Concurrent Au-
tomata

The following proposition follows immediately from
the one-exponential decision procedure for PDLE pre-
sented in [Pra81, HS851, and the exponential elimina-
tion of each of A or C, given in [DHSS].

Proposition 3.1 For I'
each ofthe logics PDLr and PDLr,E,

{A,C} with (rl = k, and

0 satisfiability is decidable in 2(k+')-DTIME; and

a every satisfiable formula has a model of size
2(k+').

482

We now consider lower bounds.

Proposition 3.2 For I? g {A,C} with \I?[= l e ,
PDLr and PDLr,E are ezactly k-succinct.

Proof:
The upper bounds of Proposition 3.1 imply that the
addition of E to I' makes no difference in succinctness,
since otherwise we would have higher lower bounds
according to Proposition 2.1. Moreover, since these
lower bounds match the upper bounds, the above le's
are maximal. Thus, it suffices to prove succinctness
to establish the exact succinctness of the logics.

We first construct the appropriate counter and po-
sitioner for PDLa, in order to establish its succinct-
ness. For simplicity, we assume the argument n is a
power of 2, i.e., n = 2' for some 1 > 0, and employ
the propositions PO, . . . ,P l - l , as well as the unary
alphabet X = {a}.

The following PDL0 families 'P and $ (X) repre-
sent an R-2(0)-counter of size O(1og n) and an R-2(')-
positioner of size O (n log n), respectively. The regu-
lar programs appearing in them can be easily imple-
mented by deterministic automata.

1-1

'Pn : A + A

[.*I (R A

i = O

(V1(P; = t ;)) ? a.

We now have to show that by employing either the
A or C features, the above formulas can be expo-
nentially compactified. This is done as follows. The
automata we used in the above formulas can be uni-
formly decomposed into the initial state s and the
automata D* for all b in the alphabet E('), where
the Db are the bdiscriminating expansions of some D
over the alphabet C. We now employ 1 components
operating concurrently (via either an A or C branch-
ing) which, for any b-transition, b = (0 0 , . . . , 0 1 - 1) ~

the ith component is 'sensitive' to only. Initially,
for any such b-transition emanating from s, the ith
component records q, and then proceeds to simulate
D, with aj substituted for 1. The joint action of the 1
components correctly simulates its behavior, and this
applies to all b. This process enables us to use a 2("-
positioner to construct a 2('+')-counter, while keep-
ing the polynomial bound. Moreover, we can then
construct a 2('+')-positioner from the 2(k+')-counter.

Analogously, the addition of the C feature to the
above 2(k+1)-positioner of LA, enables us to com-
pactify A-automata into equivalent {A,C}-automata,
from which we can construct the appropriate 2('+')-
counter and 2('+')-positioner as formulas in LA,c. A

Our main result concerning PDL with concurrent
automata is obtained by combining Propositions 2.1,
3.1 and 3.2.

Theorem 3.3 For I' C {A,C} with II'l = l e , and each
of the logics PDLr and PDLr.E,

the satisfiabilzty problem is logspace complete for

the size of models for formulas of length n i s

2(k+1)-DTIME; and

o (2(' + ') (n)) .

Linear temporal logic can be handled similarly.

Theorem 3.4 For I' & {A,C} with II'l = k , and each
of the logics LTLr and LTLr,E,

0 the satisfiabdity problem is logspace complete for

the size of models for formulas of length n i s

2(k)-SPACE; and

o (2(' + '1 (n)) .

Sketch of Proof:
The upper bounds can be established by combin-
ing the PSPACE completeness of LTL0 proved in
[WVS83] and the translations between automata of
[DH89]. For the lower bounds, the counters and
positioners of Proposition 3.2 can be easily trans-
formed into appropriate LTL ones, thus establishing
the linear-succinctness of LTL. The lower bounds now
follow from Corollary 2.2.

483

Actually, the linear-2(0)-succinctness (and hence
also the PSPACE-hardness) holds for the less expres-
sive version of LTL restricted to the standard until
and nezt operators, thus reestablishing the PSPACE
completeness proved in [HR83, SC85]. 4

4 BTL and YAPL with Concurrent
Aut omat a

Proposition 4.1 For I' C {A,C} with II'l = k, and
each of the logics BTLp and BTLr,E,

0 satisfiability b decidable in 2(k+2)-DTIME; and

0 every satisfiable formula has a model of size
2(k+2).

Sketch of Proof:
A double-exponential decision procedure for BTLE
can be obtained by first using an exponential transla-
tion into A-PDLE as described in [VW83], and then
an exponential decision procedure, similar to the pro-
cedure presented in [EJ89] for A-PDL (PDL with pro-
grams represented by regular expressions plus the re-
peat operation denoted A). Now we can proceed by
the standard exponential elimination of each of A or
C, given in [DH89].

Proposition 4.2 For I' C {A,C} with II'l = k,
BTLr and BTLr,E are ezactly (k + 1)-succinct.

Proof:
Similarly to the proof of Proposition 3.2, we focus first
on the (k + 1)-succinctness of BTLQ. We construct
appropriate counter and positioner with the reference
proposition R.

Assume the argument n is a power of 2, i.e.,
n = 2' for some 1 > 0, and employ the propositions
Po,. . . , Pi-1 accordingly, as well as several additional
propositions: I , J , and RI. We introduce several
abbreviations: By P = 0 we abbreviate

1- 1

A -pi i
i = O

and by 03 = @ + 1 we abbreviate

stating that presently Y1 holds iff eventually Yz holds
in a state at which the proposition I 'falls' (i.e., I
changes its truth value from true in the indicated
state to false in the next one).
By I 1 P' we abbreviate

(TR)U(RA O ((T R) U (I A 0 - I))) A

A(I I ~ i , p i)

stating that eventually I falls with pr5cisely one R-
state before the fall, while the counter P has the same
value in the present state and in the falling state.
Also, for any formulas Yl,Yz, we abbreviate by I4
Y1, Yz the scheme

1-1

i = O

((RAYi) VO((-R)U(7RAYi)))

O(Yz A O ((l R) U (R A I A OlI))).
In this scheme and in the following formula we con-
sider intervals which begin with an R-state and end
just before an R-state. The scheme states that Y1
holds in some state of the first interval, iff eventu-
ally Yz holds in some state of an inteyal immediately
after which I falls. Finally, by I $ Q, we abbreviate

(7Ri)U(Ri A (O 7 R l) U (R A I A 0 - I)) A

A
t'E IT,FY

(I U ((3 = Q A J) , ((@ = Q A Q))

where (F = if) stands for

1- 1 A(P; E t i) .

i=O

This formula states that eventually I falls in some
R-state, with precisely one RI-state before the fall,
and that the first and the last intervals before-I falls
are relatyd in such a way that for every value t of the
counter P , a cstate in the first interval satisfies J iff a
;state in the last interval satisfies Q . The proposition
J will be used to mark those posiiions in an interval
(representing the binary number Q) at which there is
a 1 bit in the binary number @ - 1. Thus, I $ @ will
imply that the value of Q in the last interval before
I falls is 1 less than its value a t the first interval.

The following BTLo families 'P and $ (X) repre-
sent an R-2(l)-counter of size O(nlogn) and an R-
2(')-positioner of size O(n1og n), respectively. The
temporal (path) operators appearing in them can be
easily implemented by the appropriate combinatorial
deterministic automata. Moreover, the presentation
of the formulas in the standard temporal logic CTL*,

484

can serve as an alternative proof for the succinctness
of standard CTL*, whose expressive power is known
to be strictly smaller than that of its automata ver-
sion BTLB.

Vu((R I F R A (T Q) U (i Q A O R)) A

(0 @ = @ + 1) A

+n(x) : R A (106) 4 (I I T , x)
We can now show that the above formulas can be

compactified as in the proof of Proposition 3.2. A
Our main result concerning BTL with concurrent

automata is directly obtained from Propositions 2.1,
4.1 and 4.2.

Theorem 4.3 For I’ & {A,C} with Irl = I C , and each
of the logics BTLr and BTLr,E,

a the satbfiability problem W logspace complete for

a the size of models for formulas of length n is
2(’+2)-DTIME; and

0(2(‘+2)).

Inspecting the details of the proof of Theorem 4.3, we
observe that they can be combined with the results
of [PR89a, PR89b] to yield the next corollary.

Corollary 4.4 For r C {A,C} with II’l = I C , and
each of the specification languages LTLr and LTLr,E,

a the implementability problem is logspace com-

a the size of implementations for formulas of

plete for 2(”’)-DTIME; and

length n is @(2(k+2)).

Moreover, the BTL succinctness results translate eas-
ily to similar YAPL ones, as indicated in [VW83].
The double exponential upper bound for YAPLE is
proved in [EJ89].

Corollary 4.5 For I? C {A$} with II’l = I C , and
each of the logics YAPLr and YAPLr,E,

a the satisfiability probkm is logspace complete for

a there is a lower bound of 2 (k+2) on the sue of
2(k+2)-DTIME; and

models.

Acknowledgements
We would like to thank Moria Levi for helping with
some of the details of an early proof of the double-
exponential lower bound on PDLc.

References
[Abr80]

[CKSBl]

[DH89]

[EH861

[EJ88]

[EJ89]

[EZ76]

[FL79]

[Har 841

K. Abrahamson, Decidability and Ezpres-
siveness of Logics of Programs, Ph.D. the-
sis, Univ. of Washington, Seattle, 1980.
Available as Technical Report 80-08-01.

A.K. Chandra, D.C. Kozen, and L.J. Stock-
meyer, Alternation, J . ACM 28, 1981,
pp. 114-133.

D. Drusinsky and D. Harel, On the power
of bounded concurrency I: The finite au-
tomata level, submitted, 1989. (Prelimi-
nary version appeared as “On the Power
of Cooperative Concurrency”, in Proc. Intl.
Conf. on Concumncy, Concurrency 88,
Lec. Notes in Comp. Sci. 335, Springer,
1988, pp. 74-103).

E.A. Emerson and J.Y. Halpern, ‘Some-
times’ and ‘not never’ revisited: On
branching time versus linear time, J. ACM
33, 1986, pp. 151-178.

E.A. Emerson and C.S. Jutla, The com-
plexity of tree automata and logic of pro-
grams, Proc. 29th IEEE Symp. Found. of
Comp. Sci., 1988, pp. 328-337.

E.A. Emerson End C.S. Jutla, On simulta-
neously determinizing and complementing
w-automata, Proc. 4th IEEE Symp. Logic
in Comp. Sci., 1989.

A. Ehrenfeucht and P. Zeiger, Complexity
measures for regular expressions, J . Comp.
Sys. Sci. 12, 1976, pp. 134-146.

M.J. Fischer and R.E. Ladner, Proposi-
tional dynamic logic of regular programs,
J. Comp. Sys. Sci. 18, 1979, pp. 194-211.

D. Harel, Dynamic logic, Handbook of
Philosophical Logic Vol. I1 (D. Gabbay and
F. Guenthner, eds.), pp. 497-604, Reidel,
1984.

485

[Har87] D. Harel, Statecharts: A visual formalism
for complex systems, Sci. Comp. Prog. 8 ,
1987, pp. 231-274.

[Had91 D. Harel, A thesis for bounded concur-
rency, Proc. 14th Symp. Math. Found.
Comput. Sci., Lec. Notes in Comp. Sci. 379,
Springer, 1989, pp. 3548.

T. Hirst and D. Harel, On the power of
bounded concurrency 11: The pushdown
automata level, Proc. 15th Coll. Trees in
Algebra and Prognzmming, Lec. Notes in
Comp. Sci., Springer, 1990. To appear.

[HH90]

[Hir89] T. Hirst, Succinctness Results for Stat-
e c h a h , Master’s thesis, Bar-Ilan Univ.,
Ramat-Gan, Israel, 1989. In Hebrew.

[Hoa78] C.A.R Hoare, Communicating sequential
processes, Comm. ACM 21, 1978, pp. 666-
677.

[HR83] J . Y. Halpern and J . H. Reif, The proposi-
tional dynamic logic of deterministic well-
structured programs, Theoretical Com-
puter Science 27, 1983, pp. 127-165.

D. Harel and R. Sherman, Propositional
dynamic logic of flowcharts, Inf. and Cont.

[HS85]

64, 1985, pp. 119-135.

[KT891 D.C. Kozen and J. Tiuryn, Logics of pro-
grams, Handbook of Theoretical Computer
Science (J. van Leeuwen, ed.), North-
Holland, Amsterdam, 1989. To appear.

A.R. Meyer and M.J. Fischer, Economy of
description by automata, grammars, and
formal systems, Proc. 12th IEEE Symp.
Switching and Automata Theory, 1971,

[MF71]

pp. 188-191.

[Mi1801 R. Milner, A Calculus of Communicat-
ing Systems, Lec. Notes in Comp. Sci. 94,
Springer, 1980.

A. Pnueli, The temporal logic of programs,
Proc. 18th IEEE Symp. Found. of Comp.

[Pnu77]

Sci., 1977, pp. 46-57.

[PRBSa] A. Pnueli and R. Rosner, On the synthe-
sis of a reactive module, Proc. 16th ACM
Symp. Princ. of Prog. Lang., 1989, pp. 179-
190.

A. Pnueli and R. Rosner, On the synthesis
of an asynchronous reactive module, Proc.

[PR89b]

16th Int. Colloq. Aut. Lang. Prog., Lec.
Notes in Comp. Sci. 372, Springer, 1989,
pp. 652-671.

[PraBl] V.R. Pratt, Using graphs to understand
PDL, Proc. Worbhop on Logics of P m -
grams (D.C. Kozen, ed.), Lec. Notes Comp.
Sci. 131, Springer, 1981, pp. 387-396.

[Rei851 W. Reisig, Petri Nets: A n Introduction,
Springer, Berlin, 1985.

A.P. Sistla and E.M. Clarke, The complex-
ity of propositional linear temporal logic, J .

[SC85]

ACM 32, 1985, pp. 733-749.

[VS851 M.Y. Vardi and L.J. Stockmeyer, Improved
upper and lower bounds for modal logics of
programs, Proc. 17th ACM Symp. Theory
of Comp., 1985, pp. 240-251.

M.Y. Vardi and P. Wolper, Yet another
process logic, Proc. Workshop on Logics of
Programs (E.M. Clarke and D.C. Kozen,
eds.), Lec. Notes Comp. Sci. 164, Springer,

[VW83]

1983, pp. 501-512.

[WVSSS] P. Wolper, M.Y. Vardi, and A.P. Sistla,
Reasoning about infinite computation
paths, Proc. 24th IEEE Symp. Found. of
Comp. Scz., 1983, pp. 185-194.

486

Figures

(alternating statechart)

(nondet. statechart)

0

t

Figure 1: Succinctness results for finite automata ouer C * (see [DH89])

487

Level 2

automata
features
level 2
level 1
level 0

Level 1

linear formalisms branching formalisms
FA LTL PDL BTL, YAPL, Synthesis

EXPSPACE 2EXPSPACE 3EXPTIME 4EXPTIME
PSPACE EXPSPACE 2EXPTIME 3EXPTIME

LOGSPACE PSPACE EXPTIME 2EXPTIME

Level 0

0

Figure 2: The three levels of automata features

Figure 3: Summary of results (all entries denote logspace completeness)

488

