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In this paper we continue the study of the in- 
herent power of bounded cooperative concurrency, 
whereby an automaton can be in some bounded 
number of states that cooperate in accepting the 
input. The present paper addresses the difficulty 
of reasoning about programs. Specifically, we con- 
sider the question of whether the additional succinct- 
ness that bounded concurrency provides influences 
the complexity of reasoning about regulzr computa- 
tion sequences on the propositional level. Our re- 
sults concern dynamic, temporal, and process logics, 
and supply a strongly affirmative answer. In par- 
ticular, we prove triple-exponential time upper and 
lower bounds on deciding the validity of propposi- 
tional dynamic logic with alternating automata en- 
riched with bounded cooperative concurrency, and 
quadruple-exponential time bounds for deciding va- 
lidity of branhcing-time and process logics with such 
automata. In addition to constituting further evi- 
dence for the inherent exponential nature of bounded 
concurrency, the results appear to provide the first 
examples of natural decision problems that are ele- 
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mentary yet have lower bounds that are higher than 
double-exponential time. 

1 Introduction 

Classical models of computation, such as Turing ma- 
chines and automata, have been enriched with ex- 
istential and universal branching to capture paral- 
lelism. However, unlike the constructs used in the 
study of real distributed processes and protocols, in 
these types of branching no cooperation takes place 
between the spawned processes, except when time 
comes to decide whether the input should be ac- 
cepted. In Turing machines and pushdown automata, 
for example, this fact is reflected in the separate tapes 
or stacks that are generated whenever branching (of 
either kind) takes place. Thus, branching essentially 
produces separate computations, the results of which 
are later combined to form the joint result. It would 
appear that in order to capture real-world concur- 
rency we would want to allow a mechanism to be in 
multiple states during a single computation, and to 
enable these states t o  cooperate in achieving a com- 
mon goal. This approach, which one might call coop- 
erative concurrency, is the dominating one in research 
on distributed systems, and not the noncooperative 
concurrency of pure branching. Moreover, in the real 
world, the number of processors available for simul- 
taneous work is bounded and cannot be assumed to 
grow as the size of the input grows. One machine of 
fixed size must solve the algorithmic problem in ques- 
tion for all inputs. In contrast, existential and univer- 
s a l  branching are unbounded - new processes can be 
spawned without limit as the computation proceeds. 
In the sequel, we shall use E, A and C, respectively, to 
denote existential branching (nondeterminism), uni- 
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versa1 branching (V-parallelism), and bounded c o o p  
erative concurrency (or simply bounded concurrency 
for short). 

Two previous papers [DH89, HH901 have inves- 
tigated the inherent power of bounded cooperative 
concurrency, relating it to the two classical kinds 
of branching. In both papers the criteria used in 
comparing the power of features is succinctness. In 
[DH89] finite automata were considered, over both fi- 
nite and infinite words, and in [HHSO] pushdown au- 
tomata were considered, for both deterministic and fi- 
nite languages. One finding that recurs in all of these 
cases is that the C feature gives rise to inherently 
exponential differences in power, in both upper and 
lower bound senses, regardless of whether E and A 
provide more, less, or the same power. This research 
is motivated and summarized in a uniform fashion in 
[ Har891. 

To help describe the present work we survey some 
of the results of [DH89]. It is well-known that NFAs 
are exponentially more succinct than DFAs, in the 
following upper and lower bound senses (see, e.g., 
[MF71]): 

0 Any NFA can be simulated by a DFA with at 
most an exponential growth in size. 

0 There is a (uniform) family of regular sets, L,, 
for n > 0, such that each L, is accepted by an 
NFA of size O(n) but the smallest DFA accepting 
it is of size at least 2,. 

The same is true of V-automata, namely, the dual 
machines, in which all branching is universal. It is 
also true that AFAs, i.e., those that combine both 
types of branching, are exponentially more succinct 
than both NFAs and V-automata, and indeed are 
double-exponentially more succinct than DFAs (see 
[CKSSl]). These results also hold in both the u p  
per and lower bound senses described. Thus, in this 
framework, E and A are exponentially powerful fea- 
tures, independently of each other (that is, whether 
or not the other is present), and, moreover, their 
power is additive: the two combined are double- 
exponentially more succinct than none. Taking a 
solid arrow to depict the presence of an upper and 
lower bound of one exponential, the bottom horizon- 
tal lines of Fig. 1 summarize these known facts.' 

In [DH89] the effect of adding the C feature was 
investigated, via the use of statecharts [Har87] as 
an extension of finite automata. One set of results 

'In the figure, transitivity is assumed too; hence, the line 
labeled 'twc-exponentials' that would lead from (E,A) to 0 is 
omitted for clarity, despite the fact that it does not follow a 
prior i .  

in [DH89] establishes the vertical lines and the top 
horizontal lines of Fig. 1, and all the transitivity 
consequences thereof. Among other things, these in- 
clude exponential upper and lower bounds for simu- 
lating nondeterministic statecharts on NFAs, double- 
exponential bounds for simulating them on DFAs, 
and triple-exponential upper and lower bounds for 
simulating alternating statecharts on DFAs. Thus, 
the vertical and horizontal lines of Fig. 1, with their 
transitive extensions, show that bounded concurrency 
represents a third, separate, exponentially powerful 
feature. It is independent of conventional nondeter- 
minism and parallelism, since the savings remain in- 
tact in the face of any combination of A and E, and 
is also additive with respect to them, by virtue of 
the double- and triple-exponential bounds along the 
transitive extensions.' 

We should add that all these results are extremely 
robust, in that they are insensitive to the particular 
mechanism of cooperation adopted. In many of the 
lower bound proofs the main use of cooperation is 
merely to pass along carries when counting in binary 
- an extremely simple form of cooperation. Conse- 
quently, the results do not depend on the choice of 
statecharts as the language for describing computa- 
tions; in fact, in this paper we define the C feature in 
terms of a simple extension of finite automata. This 
extension is an abstraction of the bounded cooper- 
ative concurrency feature present in the statechart 
formalism as well as in bounded versions of conven- 
tional formalisms of concurrency such as Petri nets 
[Rei851 CSP [Hoa78], CCS [Mi180], or the concurrent 
versions of standard programming languages such as 
Pascal or Prolog. As the reader will be able to see 
quite easily, this robustness carries over to our work 
here too. 

In the present paper we concern ourselves with the 
effect these discrepancies in succinctness have on the 
difficulty of reasoning about regular programs a t  the 
propositional level. We consider several formalisms: 
linear temporal logic (LTL) [Pnu77], branching tem- 
poral logic (BTL) [EH861 , propositional dynamic logic 
(PDL) [FL79], and process logzc (YAPL) [VW83]. For 
lack of space we focus in this preliminary report on 
PDL and BTL. 

To motivate the work further, it is useful to recall 
some results on PDL. (Definitions can be found in 
[FL79, Har84, KT891.) One of the basic questions re- 
garding PDL is the complexity of deciding the validity 
of formulas. Is the validity problem decidable, and if 
so is it worse than that of its sublogic, the proposi- 

'Similar results arc obtained in [DH89] for the case of in- 
finite words, and in [Hir89] for the case of finite words over a 
one-let ter alphabet. 
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tional calculus (which is co-NP-complete)? In [FL79] 
it is shown that the problem is decidable in NEXP- 
TIME, a bound that was later improved by Pratt to 
DEXPTIME3 (see, e.g., [Har84, KT891). A match- 
ing lower bound of EXPTIME was also established 
in [FL79], so that the problem is actually logspace- 
complete for deterministic exponential time. 

An interesting question was raised in [PraSl]. From 
results in [EZ76] it follows that NFAs are exponen- 
tially more succinct than regular expressions, in the 
upper and lower bounds senses used here4. The ques- 
tion in [Pra81] was whether the version of PDL in 
which the programs are NFAs, instead of regular ex- 
pressions, is complete for EXPTIME or perhaps re- 
quires PEXPTIME (double-exponential time) - one 
exponential for transforming the NFAs into regular 
expressions and the other to apply the exponential 
time decision procedure for regular PDL5. The an- 
swer is the former: PDLE, as we may call it, signify- 
ing that the programs are automata enriched with the 
E feature, is also decidable in EXPTIME (see [Pra81, 
HS851). Clearly, this implies EXPTIME decidability 
for PDLe too. (The lower bound of EXPTIME can 
be easily established for PDLe too.) Thus, the dif- 
ferences in succinctness between regular expressions 
and deterministic or nondeterministic automata do 
not affect the exponential time decidability of PDL; 
reasoning about abstract regular programs, given in 
any of the three media for representation, can be car- 
ried out in deterministic exponential time. 

Given the succinctness results of Fig. 1, new ques- 
tions arise. Does the A feature make a difference? 
How about the C feature? What happens when two 
or three of the features are present? Our main re- 
sult is that, in contrast with E, the A and C features 
do make a difference. We show that the succinct- 
ness that these features provide carries over to the 
problem of reasoning about computation sequences 
enriched by the corresponding automata, causing the 
decision problems to be much harder. Specifically, we 
show that A and C add an exponential to the com- 
plexity of the decision problems for the formalisms 
we investigate, independently of each other, and in 
an additive manner. Our results, depicted in Fig. 2, 
are summarized in Fig. 3. 

The outline of the paper is as follows. The techni- 
cal issues that cause the decision problems to become 
hard are isolated in Section 2. It turns out that it suf- 
fices to be able to carry out a uniform kind of counting 

3Wc shall simply write EXPTIME for short. 
4For DFAs, there arc exponential lower bounds in both 

directions. 
We should add that representing regular programs by au- 

tomata, rather than by regular expressions, is tantamount to 
moving from while-programs to flowcharts. 

and marking states in the models. Whenever this is 
doable, the appropriate lower bounds follow. 

Our results are 
summarized in the penultimate column of Fig. 3. It 
is not too difficult to see that the upper bounds follow 
from those of Fig. 1. For example, that PDLE,A,c can 
be decided in triple-exponential time follows from the 
ability to  remove the A and C features at a cost of 
two exponentials, and to then apply the exponential 
decision procedure of [HS85, Pra811. We thus con- 
centrate on lower bounds, which require a nontrivial 
combination of techniques from [Abr80, DH89, FL79, 
VS851. (The main results of Section 3 appeared in 
preliminary form in [Har89].) 

We next turn to CTL*, a branching version of tem- 
poral logic in which formulas can quantify over paths 
in the model [EH861 and YAPL, a restricted form 
of process logic [VW83]. For both of these, an upper 
bound of 2EXPTIME was established in [EJ88, EJ89] 
and a lower bound of 2EXPTIME was established in 
[VS85]. In Section 4 we extend these logics too with 
the E, A and C features. Our results concerning the 
added complexity of these features are analogous to 
those for PDL, as can be seen in the last column 
in Fig. 3. Since the basic decision problem here is 
BEXPTIME, all the complexity bounds are one expo- 
nential higher. In particular, CTL* and YAPL with 
alternating statecharts is shown to be complete for 
4EXPTIME. 

Our bounds for CTL* apply also to the problem 
of program synthesis, studied in [PR89a, PR89bl. It 
is shown there how, given a linear temporal speci- 
fication ‘PI a branching temporal formula ?I, can be 
derived, whose validity expresses the implementabil- 
ity of the specification p. On the propositional level, 
this form of the synthesis problem is PEXPTIME- 
complete. We observe that our proofs of the CTL* 
case entail analogous results concerning the synthe- 
sis problem. Specifically, we can show that for spec- 
ifications given in linear temporal logic augmented 
with automata temporal connectives, the complexity 
of synthesis is identical to that of CTL* augmented 
with the corresponding automata. This applies to 
any combination of E, A and C. 

We consider the results of the paper to be interest- 
ing in several respects. First, they provide additional 
strong evidence for the inherent exponential power of 
bounded cooperative concurrency. Second, they show 
that the relationship between the E, A, and C fea- 
tures, when considered in the present framework, dif- 
fers from that obtained when investigating succinct- 
ness alone as in [DH89, Hir891. This is demonstrated 
by the difference between Fig. 1 and Fig. 2. Finally, 
the 2EXPSPACE, 3EXPTIME and 4EXPTIME re- 

We consider PDL in Section 3. 

I 
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sults appear to be the first examples of natural deci- 
sion problems in logic that are solvable in elementary 
time, but whose lower bounds are higher than 2 E X -  
PTIME. 

2 Counting and Comparing Counters 

As our basis, we use finite-state automata on finite 
words. We briefly describe an extension thereof, sim- 
ilar to  that of [CKS81], but enriched with the C op- 
erator of [DH89], with the intention of providing a 
uniform approach to the different notions of concur- 
rency. An automaton in our extended model consists 
of the following components: A finite alphabet C; a 
set S of states partitioned into three types: E-states, 
A-states and C-states; two designated sets of initial 
and of terminal subsets of S; and a transition func- 
tion, assigning to each pair of states (i.e., a transi- 
tion) a Boolean expression over B = C U S. Here, E 
stands for existential (unbounded) nondeterminism, 
A stands for universal (unbounded) nondeterminism, 
and C stands for bounded cooperative concurrency. A 
transition ( ~ 1 , s ~ )  is said to be enabled on a set of 
states SI and a symbol a E C, if the transition func- 
tion assigns to it a true expression under the char- 
acteristic function of S' U {a}  in B .  A run of an 
automation A on a word ala2 . . . ak is a finite fron- 
tiered tree (called a trace) of depth k ,  each node of 
which contains a non-empty set of states. The root of 
the trace contains some initial subset of S. A node on 
level i of the trace containing the set S' is expanded 
to its level i+ 1 successors by simultaneously applying 
some transition that is enabled on SI and a; to each 
E-state in SI, and all enabled transitions to every C- 
state and A-state in SI. A C-state is expanded by 
replacing it by all of its successors, but without split- 
ting the node. An A-state, on the other hand, is ex- 
panded by splitting the node in question into several 
nodes, each of which contains the expansion of the 
original set of states but with the A-state replaced by 
one of its successors. This captures the subtle differ- 
ence between C and A: the former denotes parallelism 
within a single computation path, whereas the latter 
denotes branching into separate paths. A accepts a 
word if there is some accepting run of A on it, i.e., 
a trace in which all the nodes along its frontier con- 
tain terminal sets of states. (We note that there is an 
obvious correspondence between these automata and 
the (A,E)-statecharts of [DH89].) The language of A ,  
L ( A ) ,  is the set of all words accepted by A .  

Call the automaton A a I?-automaton, for r 
{A,E,C}, if A employs the features listed in r (i.e., A 
has states of the corresponding types). An automa- 
ton A operating on an alphabet C = {ao,. . . ak-l}, 

denoted A ( Q , .  . . , ak-l), is viewed as a IC-ary opera- 
tor. We briefly describe the formalism; the reader is 
referred to [HS85, VW83, WVS831 for more details. 

We consider propositional logics of programs with 
two types of elements: programs and formulas. 
We obtain programs by applying IC-ary automata 
A(%, . . . ,ak- l )  to k pairs (X;,b,), where Xi is a 
propositional formula and b; is an atomic program. 
The intended semantics of this program is a set of 
paths, where every such path corresponds to a word 
in the language accepted by A .  The letter ai corre- 
sponds to a bi-transition from a state satisfying X;. 
This definition is in the spirit of defining programs 
over sequences of alternating tests and letters, which 
is more suitable for our approach of unifying the dy- 
namic and temporal formalisms. 

Formulas are formed from atomic propositions 
P, Q, . . ., and programs, by Boolean connectives 1, V, 
and the <> modality over pairs of programs and for- 
mulas. All formulas are state fomulas,  i.e., their in- 
tended semantics is a set of states, except for pro- 
grams, which are path formulas, i.e., their intended 
semantics is a set of paths. 

Process logic (YAPL) is the largest formalism ad- 
mitting all the above defined formulas. Here, < a > 
X requires X to be evaluated over an infinite path 
a prefix of which is admitted by a. Propositional 
dynamic logic (PDL) is obtained as the special case, 
where modalities are applied only to state formulas, 
with < a > X requiring X to hold at some end-state 
of an (Y path. In branching temporal logic (BTL) on 
the other hand, there is only one implicit atomic pro- 
gram, say a, and thus a single modality < a' > (de- 
noted by the path quantifier 3) ,  while linear temporal 
logic (LTL) is further restricted to linear models (and 
hence also drops the path quantifier 3). A subscript 
r to the above logics refers to the automata features 
admitted. 

Let C = {0,1} be our basic alphabet. We consider 
automata with alphabet XfZiC = E('), 1 > 0. A 
letter in E(') is to be viewed as encoding the truth 
values of 1 propositions. Let D be an automaton over 
the alphabet C. For a letter b E E(') define the b 
discriminating expansion of D ,  to be the automaton 
Db over the alphabet E(') , derived from D by replac- 
ing any 1-edge in D by a bedge, and any 0-edge in it 
by the set of all possible E(') - {b} edges. 

For an integer k 1 0, define the function 2(') : Jf -+ 

N as follows: 2(')(m) = m, and 2('+')(m) = 22'k'("). 
Let L be any version of LTLr, PDLr, BTLr, or 

YAPLr, with r {E,A,C}. Let R be an atomic 
proposition and f : N -+ Af an integer function. De- 
fine an R- f-counter to be a family CP = {CP,, I n > 0) 
of L-formulas that can be generated in polynomial (in 
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n) time, such that: 

0 every model for 'Pn has at least f (n)  distinct 
states in which R holds (call such states R- 
states); and 

a for every m > 0, there exists a model for 'P, 
and a cycle in this model, along which there are 
precisely mf (n) distinct R-states. 

Intuitively, the formula 'P, counts reference points 
marked by the proposition R along paths, so that 
every cycle has a count of 0 modulo f (n). 

Given such a counter, define an R- f-positioner to 
be a family $(X) = { q n ( X )  I n > 0) of L-formulas 
that can be generated in polynomial (in n) time, such 
that: for any L-formula X, a model M for 'P,, and 
R-state SO, if M,so  $,(X), then along every path 
in the model, formed by atomic programs from 4, 
and rooted at so, the f(n)-th R-state satisfies X. In- 
tuitively, the formula $,(x) imposes the truth of x 
at the f(n)-th reference point along any appropriate 
path. 

The idea underlying our lower bounds is that a pair 
consisting of an R-f-counter and an R- f-positioner, 
enables us to describe Turing machines behaviors 
structured as either sequences or trees, with fixed size 
configurations at each node. The size of all configu- 
rations is a multiple g(n) = mf(n) ,  for some fixed 
m > 0. To be able to describe paths along such trees 
we require that every configuration follows from the 
previous one by 'local' transformations only, i.e., the 
j ' th point in a configuration can be determined by 
propositional reasoning from the j'th point in the pre- 
vious configuration. Indeed, Turing machines transi- 
tions are local in that sense. 

The logic L is linearly-i-succinct, i 2 0, if there 
exist in L, 

0 an R-2(i)-counter (0; and 

0 an R-Z(*)-positioner $(X). 

L is i-succinct if it is linearly-i-succinct, and is inter- 
preted over branching structures, i.e., L is not LTL. 
L is ezactly (linearly-) a-succinct if i is the largest j 
such that L is (linearly-) j-succinct. 

The next results isolate the computational aspects 
of our proofs, by generalizing the simulation of vari- 
ous Turing machines using appropriate powerful log- 
ics. 

Proposition 2.1 If L is k-succinct, then 

a the satisfiability problem for L is logspace hard 
for 2('+')-DTIME; and 

a the size of models for formulas of length n is 
Cl(2("+1)). 

Sketch of Proof: 
We generalize techniques used in [FL79] for prov- 
ing the one-exponential lower bound for regular 
PDL, and ideas that are reminiscent of the double- 
exponential bounds given in [Abr80] for PDL with 
Boolean variables, and in [VS851 for CTL*. 

Given an arbitrary 2(k)(cn)-space-bounded alter- 
nating Turing machine M ,  with c a constant, and an 
input c of size cn, we construct a polynomial-size for- 
mula ' P M , ~  in the logic L, and show that M accepts 
x iff ( 0 ~ ~ ~  is satisfiable. The idea is to encode each 
configuration of M by a sequence of 2(')(cn) R-states 
in an L model, identified by an appropriate R-2(')- 
counter. The key thing that ' P M , ~  must be able to 
do (all the rest follows more or less standard PDL or 
CTL* techniques), is to  jump from an arbitrary point 
in one configuration to the corresponding point in a 
successor configuration, in order to verify compliance 
with the transition table of M .  This is done by using 
the corresponding R-2(k)-positioner. 

The total size of the resulting formula can then be 

By restricting these techniques to linear models, 
we may similarly encode computations of nondeter- 
ministic space-bounded Turing machines. Hence the 
following corollary. 

Corollary 2.2 If L is linearly-k-succinct, then 

shown to be polynomial in n. d 

a the satisfiabilzty problem for L is logspace h a d  

0 the size of models for formulas of length n is 
for 2(k)-SPACE; and 

Cl(2('+')). 

Having thus set up the general results, we are left with 
having to show succinctness of the different versions 
of the particular logics we are interested in. This is 
done in the following two sections. 

3 PDL and LTL with Concurrent Au- 
tomata 

The following proposition follows immediately from 
the one-exponential decision procedure for PDLE pre- 
sented in [Pra81, HS851, and the exponential elimina- 
tion of each of A or C, given in [DHSS]. 

Proposition 3.1 For I' 
each ofthe logics PDLr and PDLr,E, 

{A,C} with (rl = k, and 

0 satisfiability is decidable in 2(k+')-DTIME; and 

a every satisfiable formula has a model of size 
2(k+'). 
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We now consider lower bounds. 

Proposition 3.2 For I? g {A,C} with \I?[ = l e ,  
PDLr and PDLr,E are ezactly k-succinct. 

Proof: 
The upper bounds of Proposition 3.1 imply that the 
addition of E to I' makes no difference in succinctness, 
since otherwise we would have higher lower bounds 
according to Proposition 2.1. Moreover, since these 
lower bounds match the upper bounds, the above le's 
are maximal. Thus, it suffices to prove succinctness 
to establish the exact succinctness of the logics. 

We first construct the appropriate counter and po- 
sitioner for PDLa, in order to establish its succinct- 
ness. For simplicity, we assume the argument n is a 
power of 2, i.e., n = 2' for some 1 > 0, and employ 
the propositions PO, .  . . ,P l - l ,  as well as the unary 
alphabet X = {a}. 

The following PDL0 families 'P and $ ( X )  repre- 
sent an R-2(0)-counter of size O(1og n) and an R-2(')- 
positioner of size O ( n  log n), respectively. The regu- 
lar programs appearing in them can be easily imple- 
mented by deterministic automata. 

1-1 

'Pn : A +  A 

[.*I ( R A 

i = O  

(V1(P; = t ; ) ) ?  a. 

We now have to show that by employing either the 
A or C features, the above formulas can be expo- 
nentially compactified. This is done as follows. The 
automata we used in the above formulas can be uni- 
formly decomposed into the initial state s and the 
automata D* for all b in the alphabet E('), where 
the Db are the bdiscriminating expansions of some D 
over the alphabet C. We now employ 1 components 
operating concurrently (via either an A or C branch- 
ing) which, for any b-transition, b = ( 0 0 , .  . . , 0 1 - 1 ) ~  

the ith component is 'sensitive' to only. Initially, 
for any such b-transition emanating from s, the ith 
component records q, and then proceeds to simulate 
D, with aj substituted for 1. The joint action of the 1 
components correctly simulates its behavior, and this 
applies to all b. This process enables us to use a 2("- 
positioner to construct a 2('+')-counter, while keep- 
ing the polynomial bound. Moreover, we can then 
construct a 2('+')-positioner from the 2(k+')-counter. 

Analogously, the addition of the C feature to the 
above 2(k+1)-positioner of LA, enables us to com- 
pactify A-automata into equivalent {A,C}-automata, 
from which we can construct the appropriate 2('+')- 
counter and 2('+')-positioner as formulas in LA,c. A 

Our main result concerning PDL with concurrent 
automata is obtained by combining Propositions 2.1, 
3.1 and 3.2. 

Theorem 3.3 For I' C {A,C} with II'l = l e ,  and each 
of the logics PDLr and PDLr.E, 

the satisfiabilzty problem is logspace complete for 

the size of models for formulas of length n i s  

2(k+1)-DTIME; and 

o (2(' + ' ) (n) ) .  

Linear temporal logic can be handled similarly. 

Theorem 3.4 For I' & {A,C} with II'l = k ,  and each 
of the logics LTLr and LTLr,E, 

0 the satisfiabdity problem is logspace complete for  

the size of models for formulas of length n i s  

2(k)-SPACE; and 

o (2(' + '1 (n))  . 

Sketch of Proof: 
The upper bounds can be established by combin- 
ing the PSPACE completeness of LTL0 proved in 
[WVS83] and the translations between automata of 
[DH89]. For the lower bounds, the counters and 
positioners of Proposition 3.2 can be easily trans- 
formed into appropriate LTL ones, thus establishing 
the linear-succinctness of LTL. The lower bounds now 
follow from Corollary 2.2. 
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Actually, the linear-2(0)-succinctness (and hence 
also the PSPACE-hardness) holds for the less expres- 
sive version of LTL restricted to the standard until 
and nezt operators, thus reestablishing the PSPACE 
completeness proved in [HR83, SC85]. 4 

4 BTL and YAPL with Concurrent 
Aut omat a 

Proposition 4.1 For I' C {A,C} with II'l = k, and 
each of the logics BTLp and BTLr,E, 

0 satisfiability b decidable in 2(k+2)-DTIME; and 

0 every satisfiable formula has a model of size 
2(k+2). 

Sketch of Proof: 
A double-exponential decision procedure for BTLE 
can be obtained by first using an exponential transla- 
tion into A-PDLE as described in [VW83], and then 
an exponential decision procedure, similar to the pro- 
cedure presented in [EJ89] for A-PDL (PDL with pro- 
grams represented by regular expressions plus the re- 
peat operation denoted A). Now we can proceed by 
the standard exponential elimination of each of A or 
C, given in [DH89]. 

Proposition 4.2 For I' C {A,C} with II'l = k, 
BTLr and BTLr,E are ezactly ( k  + 1)-succinct. 

Proof: 
Similarly to the proof of Proposition 3.2, we focus first 
on the (k + 1)-succinctness of BTLQ. We construct 
appropriate counter and positioner with the reference 
proposition R. 

Assume the argument n is a power of 2, i.e., 
n = 2' for some 1 > 0, and employ the propositions 
Po,. . . , Pi-1 accordingly, as well as several additional 
propositions: I ,  J ,  and RI. We introduce several 
abbreviations: By P = 0 we abbreviate 

1- 1 

A -pi i 
i = O  

and by 03 = @ +  1 we abbreviate 

stating that presently Y1 holds iff eventually Yz holds 
in a state at which the proposition I 'falls' (i.e., I 
changes its truth value from true in the indicated 
state to false in the next one). 
By I 1  P' we abbreviate 

(TR)U(RA O ( ( T R ) U ( I  A 0 - I ) ) )  A 

A(I  I ~ i , p i )  

stating that eventually I falls with pr5cisely one R- 
state before the fall, while the counter P has the same 
value in the present state and in the falling state. 
Also, for any formulas Yl,Yz, we abbreviate by I4 
Y1, Yz the scheme 

1-1 

i = O  

( (RAYi)  VO((-R)U(7RAYi)))  

O(Yz A O ( ( l R ) U ( R  A I A OlI))). 
In this scheme and in the following formula we con- 
sider intervals which begin with an R-state and end 
just before an R-state. The scheme states that Y1 
holds in some state of the first interval, iff eventu- 
ally Yz holds in some state of an inteyal immediately 
after which I falls. Finally, by I $  Q, we abbreviate 

(7Ri)U(Ri  A ( O 7 R l ) U ( R  A I A 0 - I ) ) A  

A 
t'E IT,FY 

( I U  ( (3  = Q A J ) , ( ( @  = Q  A Q ) )  

where (F = if) stands for 

1- 1 A(P; E t i ) .  

i=O 

This formula states that eventually I falls in some 
R-state, with precisely one RI-state before the fall, 
and that the first and the last intervals before-I falls 
are relatyd in such a way that for every value t of the 
counter P ,  a cstate  in the first interval satisfies J iff a 
;state in the last interval satisfies Q .  The proposition 
J will be used to mark those posiiions in an interval 
(representing the binary number Q )  at which there is 
a 1 bit in the binary number @ - 1. Thus, I $ @ will 
imply that the value of Q in the last interval before 
I falls is 1 less than its value a t  the first interval. 

The following BTLo families 'P and $ ( X )  repre- 
sent an R-2(l)-counter of size O(nlogn) and an R- 
2(')-positioner of size O(n1og n), respectively. The 
temporal (path) operators appearing in them can be 
easily implemented by the appropriate combinatorial 
deterministic automata. Moreover, the presentation 
of the formulas in the standard temporal logic CTL*, 
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can serve as an alternative proof for the succinctness 
of standard CTL*, whose expressive power is known 
to be strictly smaller than that of its automata ver- 
sion BTLB. 

Vu( ( R I  F R A  ( T Q ) U ( i Q  A O R ) )  A 

( 0 @ = @ + 1 )  A 

+n(x) : R A (106) 4 ( I  I T , x )  
We can now show that the above formulas can be 

compactified as in the proof of Proposition 3.2. A 
Our main result concerning BTL with concurrent 

automata is directly obtained from Propositions 2.1, 
4.1 and 4.2. 

Theorem 4.3 For I’ & {A,C} with Irl = I C ,  and each 
of the logics BTLr and BTLr,E, 

a the satbfiability problem W logspace complete for 

a the size of models for formulas of length n is 
2(’+2)-DTIME; and 

0(2(‘+2)). 

Inspecting the details of the proof of Theorem 4.3, we 
observe that they can be combined with the results 
of [PR89a, PR89b] to yield the next corollary. 

Corollary 4.4 For r C {A,C} with II’l = I C ,  and 
each of the specification languages LTLr and LTLr,E, 

a the implementability problem is logspace com- 

a the size of implementations for formulas of 

plete for 2(”’)-DTIME; and 

length n is @(2(k+2)). 

Moreover, the BTL succinctness results translate eas- 
ily to similar YAPL ones, as indicated in [VW83]. 
The double exponential upper bound for YAPLE is 
proved in [EJ89]. 

Corollary 4.5 For I? C {A$} with II’l = I C ,  and 
each of the logics YAPLr and YAPLr,E, 

a the satisfiability probkm is logspace complete for  

a there is a lower bound of 2 (k+2)  on the sue of 
2(k+2)-DTIME; and 

models. 
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Figures 

(alternating statechart) 

(nondet. statechart) 
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Figure 1: Succinctness results for finite automata ouer C * (see [DH89]) 
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Level 2 
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Level 1 

linear formalisms branching formalisms 
FA LTL PDL BTL, YAPL, Synthesis 

EXPSPACE 2EXPSPACE 3EXPTIME 4EXPTIME 
PSPACE EXPSPACE 2EXPTIME 3EXPTIME 

LOGSPACE PSPACE EXPTIME 2EXPTIME 

Level 0 

0 

Figure 2: The three levels of automata features 

Figure 3: Summary of results (all entries denote logspace completeness) 
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